Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(1): 495-508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974974

RESUMO

The nosocomial infection outbreak caused by Pseudomonas aeruginosa remains a public health concern. Multi-drug resistant (MDR) strains of P. aeruginosa are rapidly spreading leading to a huge mortality rate because of the unavailability of promising antimicrobials. MurG glycotransferase [UDP-N-acetylglucosamine-N-acetylmuramyl (pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase] is located at the plasma membrane and plays a key role in murein (peptidoglycan) biosynthesis in bacteria. Since MurG is required for bacterial cell wall synthesis and is non-homologous to Homo sapiens; it can be a potential target for the antagonist to treat P. aeruginosa infection. The discovery of high-resolution crystal structure of P. aeruginosa MurG offers an opportunity for the computational identification of its prospective inhibitors. Therefore, in the present study, the crystal structure of MurG (PDB ID: 3S2U) from P. aeruginosa was selected, and computational docking analyses were performed to search for functional inhibitors of MurG. IMPPAT (Indian medicinal plants, phytochemicals and therapeutic) phytomolecule database was screened by computational methods with MurG catalytic site. Docking results identified Theobromine (-8.881 kcal/mol), demethoxycurcumin (-8.850 kcal/mol), 2-alpha-hydroxycostic acid (-8.791 kcal/mol), aurantiamide (-8.779 kcal/mol) and petasiphenol (-8.685 kcal/mol) as a potential inhibitor of the MurG activity. Further, theobromine and demethoxycurcumin were subjected to MDS (molecular dynamics simulation) and free energy (MM/GBSA) analysis to comprehend the physiological state and structural stability of MurG-phytomolecules complexes. The outcomes suggested that these two phytomolecules could act as most favorable natural hit compounds for impeding the enzymatic action of MurG in P. aeruginosa, and thus it needs further validation by both in vitro and in vivo analysis. HIGHLIGHTSThe top phytomolecules such as theobromine, demethoxycurcumin, 2-alpha-hydroxycostic acid, aurantiamide and petasiphenol displayed promising binding with MurG catalytic domain.MurG complexed with theobromine and demethoxycurcumin showed the best interaction and stable by MD simulation at 100 ns.The outcome of MurG binding phytomolecules has expanded the possibility of hit phytomolecules validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecção Hospitalar , Pseudomonas aeruginosa , Humanos , Teobromina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
2.
J Biomol Struct Dyn ; 41(7): 2698-2712, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156902

RESUMO

Acinetobacter baumannii is a notorious multidrug resistant bacterium responsible for several hospital acquired infections assisted by its capacity to develop biofilms. A. baumannii BfmR (RstA), a response regulator from the BfmR/S two-component signal transduction system, is the major controller of A. baumannii biofilm development and formation. As a result, BfmR represents a novel target for anti-biofilm treatment against A. baumannii. The discovery of the high-resolution crystal structure of BfmR provides a good chance for computational screening of its probable inhibitors. Therefore, in this study we aim to search new, less toxic, and natural BfmR inhibitors from 8450 phytomolecules available in the Indian Medicinal Plants, Phytochemistry and Therapeutic (IMPPAT) database by analyzing molecular docking against BfmR (PDB ID: 6BR7). Out of these 8450 phytomolecules 6742 molecules were successfully docked with BfmR with the docking score range -6.305 kcal/mol to +5.120 kcal/mol. Structure based-molecular docking (SB-MD) and ADMET (absorption, distribution, metabolism, excretion, & toxicity) profile examination revealed that Norepinephrine, Australine, Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline phytocompounds strongly binds to the active site residues of BfmR. Furthermore, molecular dynamics simulation (MDS) studies for 100 ns and the binding free energy (MM/GBSA) analysis elucidated the binding mechanism of Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline to BfmR. In summary, these phytocompounds seems to have the promising molecules against BfmR, and thus necessitates further verification by both in vitro and in vivo experiments. HighlightsBfmR plays a key role in biofilm development and exopolysaccharide (EPS) synthesis in A. baumannii.Computational approach to search for promising BfmR inhibitors from IMPAAT database.The lead phytomolecules such as Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline displayed significant binding with BfmR active site.The outcome of BfmR binding phytomolecules has broadened the scope of hit molecules validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Acinetobacter baumannii , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Acinetobacter baumannii/metabolismo , Nordefrin/metabolismo , Desenvolvimento de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...